US2.AI
AI solution for echo cardiography analysis
Us2.ai software recognizes and analyzes transthoracic 2D and Doppler modality echocardiogram images, automating cardiac structural and functional measurements. Us2 algorithms produce a complete patient report, with editable annotations, and findings based upon international reference guidelines
A full suite of measurements
US2.AI provides over 45 fully automated echocardiography measurements, such as ejection fraction, strain for the left atrium and right ventricle, and more—all without the need for ECG. It offers comprehensive analysis, covering strain and regional strain imaging, 2D, and Doppler views. With true AI automation, there’s no need for manual frame selection, annotations, or view selection—just seamless, automated insights.
Disease Condition Detection
US2.AI can evaluate heart disease conditions, including heart failure (HFpEF, HFmrEF, HFrEF), pulmonary hypertension & right-heart failure, hypertrophic cardiomyopathy, amyloidosis, valvular disease (stenosis, regurgitations), Ischemic heart disease, and more.
Time gains: AI echo reduces exam time by 70% (6)
Early detection of cardiological risk factors (9)
Save time, secure your diagnosis and optimize your workflow with Incepto
Publications
-
A Ioannou, et al, Automated analysis of echocardiograms at diagnosis is able to predict prognosis in ATTR cardiomyopathy, European Heart Journal - Cardiovascular Imaging, Volume 24, Issue Supplement_1, June 2023
P Myhre, et al, External validation of a deep learning algorithm for automated echocardiographic strain measurements, European Heart Journal - Cardiovascular Imaging, Volume 24, Issue Supplement_1, June 2023
Krishna H, et al. Fully Automated Artificial Intelligence Assessment of Aortic Stenosis by Echocardiography. J Am Soc Echocardiogr. 2023 Jul;36(7):769-777 -
Tromp J, Seekings PJ, Hung CL, Iversen MB, Frost MJ, Ouwerkerk W, Jiang Z, Eisenhaber F, Goh RSM, Zhao H, Huang W, Ling LH, Sim D, Cozzone P, Richards AM, Lee HK, Solomon SD, Lam CSP, Ezekowitz JA. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. Lancet Digit Health. 2022 Jan;4(1):e46-e54. doi: 10.1016/S2589-7500(21)00235-1. Epub 2021 Dec 1. PMID: 34863649.
-
Myhre PL, Tromp J, Ouwerkerk W, Ting DSW, Docherty KF, Gibson CM, Lam CSP. Digital tools in heart failure: addressing unmet needs. Lancet Digit Health. 2024 Oct;6(10):e755-e766. doi: 10.1016/S2589-7500(24)00158-4. Epub 2024 Aug 29. Erratum in: Lancet Digit Health. 2024 Oct;6(10):e680. doi: 10.1016/S2589-7500(24)00201-2. PMID: 39214764.
-
Tromp J, Bauer D, Claggett BL, Frost M, Iversen MB, Prasad N, Petrie MC, Larson MG, Ezekowitz JA, Solomon SD. A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram. Nat Commun. 2022 Nov 9;13(1):6776. doi: 10.1038/s41467-022-34245-1. PMID: 36351912; PMCID: PMC9646849.
-
Huang W, Koh T, Tromp J, Chandramouli C, Ewe SH, Ng CT, Lee ASY, Teo LLY, Hummel Y, Huang F, Lam CSP. Point-of-care AI-enhanced novice echocardiography for screening heart failure (PANES-HF). Sci Rep. 2024 Jun 12;14(1):13503. doi: 10.1038/s41598-024-62467-4. PMID: 38866831; PMCID: PMC11169397.
-
Sadeghpour A, Jiang Z, Hummel YM, Frost M, Lam CSP, Shah SJ, Lund LH, Stone GW, Swaminathan M, Weissman NJ, Asch FM. An Automated Machine Learning-Based Quantitative Multiparametric Approach for Mitral Regurgitation Severity Grading. JACC Cardiovasc Imaging. 2024 Aug 2:S1936-878X(24)00247-X. doi: 10.1016/j.jcmg.2024.06.011. Epub ahead of print. PMID: 39152959.
-
Hirata Y, Nomura Y, Saijo Y, Sata M, Kusunose K. Reducing echocardiographic examination time through routine use of fully automated software: a comparative study of measurement and report creation time. J Echocardiogr. 2024 Sep;22(3):162-170. doi: 10.1007/s12574-023-00636-6. Epub 2024 Feb 3. PMID: 38308797; PMCID: PMC11343801.
-
K Teramoto et al. Abstract 9620: External Validation of Deep Learning-Based Echocardiography Algorithms to Automate View Selection and Annotation of the Echocardiogram. Circulation, Volume 146, Number Suppl_1 https://doi.org/10.1161/circ.146.suppl_1.9620
-
Valsaraj A, Kalmady SV, Sharma V, Frost M, Sun W, Sepehrvand N, Ong M, Equilbec C, Dyck JRB, Anderson T, Becher H, Weeks S, Tromp J, Hung CL, Ezekowitz JA, Kaul P. Development and validation of echocardiography-based machine-learning models to predict mortality. EBioMedicine. 2023 Apr;90:104479. doi: 10.1016/j.ebiom.2023.104479. Epub 2023 Feb 28. PMID: 36857967; PMCID: PMC10006431.
Regulatory
Contact us to know if this product is available in your country.